遗传性高铁血红蛋白血症
遗传性代谢缺陷病的发病机制与其他分子病(如血红蛋白病)一样,主要是由于:①点突变使其编码合成的蛋白质(酶)一级结构改变,空间结构不稳定易降解而导致的含量减少;②酶空间结构改变不仅影响了酶的稳定性,进而使酶活性改变或丧失;③由于点突变导致转录拼接等错误,不能合成或合成了有较大片段缺失的酶蛋白。
蛋白质(酶)的一级结构中某个氨基酸被置换,将会影响其二级和三级结构的稳定性。实验证明,上表所列几种Ⅰ型b5R变异,都表现出热稳定性降低,于成熟红细胞已经失去了细胞核与细胞器,与其他组织细胞不同不能再重新合成所需要的酶。因此如果主要缺陷只是稳定性降低,则仅仅突出地表现在红细胞内b5R减少及活性减低,临床上表现为Ⅰ型MetHb血症。若将其血液离心,就会发现底层红细胞(老年红细胞)比上层年幼红细胞中b5R活性更低,MetHb含量也较高。
若b5R分子中某些关键部位的氨基酸被置换,不仅影响到酶的稳定性,而且影响其生物活性,如与底物NADH的亲和力明显减低(Km值增大),结果就会严重地影响其催化效率,合成的是丧失了活性的酶。这样,不仅会累及红细胞,而且使各种组织细胞内的b5R活性丧失,影响了重要的物质代谢。如神经髓鞘中脑苷脂和神经节苷脂的生物合成障碍,会造成神经系统发育不良。此类变异临床表现为Ⅱ型MetHb血症。利用基因工程和定点突变技术,可以在实验室中人工合成各种突变的酶对其生物化学特性的研究也证实凡能导致Ⅱ型MetHb血症的突变酶,催化效率都有严重丧失。
另外,如表中所列,基因突变若影响了正确地表达,如mRNA拼接错误、提前终止大片段遗漏等也会表现为Ⅱ型MHb血症。
来源网址